Math 10250 Activity 4: Limits (Section 1.1)

GOAL: To obtain an intuitive understanding of the fundamental concept of limit and learn rules for computing it.

Q1: Using your intuition, how would you interpret the statement: The function $f(x) = \frac{x^2 - 2x - 3}{x - 3}$ has limit 4 as x goes to 3? $f(x) \approx 4$ when x is close to 3 but $x \neq 3$ $(x \approx x \text{ reads is approximately equal to})$

A1: Natural domain of $f: x \neq 3$.

Since f is not defined at x = 3, let's look at how f behaves <u>near</u> x = 3. To do this, we make a table of values like this:

Step 1: We do numerical experimentation:

x	2.97	2.98	2.99	3	3.01	3.02	3.03
$f(x) = \frac{x^2 - 2x - 3}{x - 3}$	3.97	3.98	3.99	?	4.01	4.02	4.03

Pattern: f(x) gets close to <u>4</u> as x gets close to 3.

To make this more precise we need the help of algebra. So, let us factor the numerator of f:

Step 2: Simplify f(x) to remove x - 3:

$$f(x) = \frac{x^2 - 2x - 3}{x - 3} = \frac{(x - 3)(x + 1)}{x - 3} \stackrel{x \neq 3}{=} x + 1$$

Step 3: Send x to 3 in the simplified form:

$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3} = \lim_{x \to 3} (x + 1) = 3 + 1 = 4, i.e.$$

- $f(x) \approx 4$ for all x near 3 (but $x \neq 3$), and
- ullet can make f(x) as close to x as we wish by taking x close enough to 3

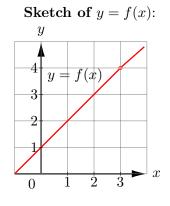


Figure 1

Now, we are confident to claim that the limit of f(x) as x goes to 3 is 4.

We write this as: $\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3} = 4.$

Q2: Give an Informal Definition of Limit.

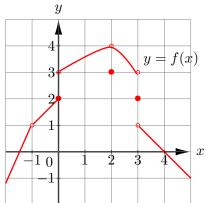
A2:

 $\lim_{x \to \infty} f(x) = L, if:$

- $f(x) \approx L$ if x is close to a (but not equal to a)
- can make f(x) as close to L as we wish by taking x close enough to a

Exercise 1 The graph of a function f is shown in Figure 2. By visually inspecting the graph, find each of the following limits if it exists. If the limit does not exist, explain why.

- (i) $\lim_{x \to 4} f(x) \stackrel{?}{=} \mathbf{0}$
- (ii) $\lim_{x \to -1} f(x) \stackrel{?}{=} 1$
- (iii) $\lim_{x \to 2} f(x) \stackrel{?}{=} 4$
- (iv) $\lim_{x \to 0} f(x) \stackrel{?}{=} \text{does not exit}$
- (v) $\lim_{x \to 3} f(x) \stackrel{?}{=}$ does not exit



Exercise 2 Find $\lim_{x\to 2} \frac{x^2-4}{x-2}$. Complete the following table of values to guess the limit and then use algebra to justify it (as in A1).

Step 1. We do numerical experimentation in the following table:

x	1.9	1.99	1.999	2	2.001	2.01	2.1	Step 2	$\frac{x^2 - 4}{x - 2} = \frac{(x - 2)(x + 2)}{x - 2} = x + 2$
$\frac{x^2 - 4}{x - 2}$	3.9	3.99	3.999	?	4.001	4.01	4.001		$\frac{x}{x-2} = \frac{(x-2)(x+2)}{x-2} = x+2$ $\lim_{x \to 2} \frac{x^2-4}{x-2} = \lim_{x \to 2} (x+2) = 2+2 = 4$
								Step 3.	$\lim_{x \to 2^{2}} \frac{1}{x-2} = \lim_{x \to 2^{2}} (x+2) = 2+2 = 4$

Q3: What are the basic <u>Limit Laws</u>?

0

2. $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$

1. $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$

A3:

$$\lim_{x \to a} x^n = a^n$$

3.
$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

4.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

5.
$$\lim_{x \to a} [f(x)]^r = \left[\lim_{x \to a} f(x)\right]^r$$

Exercise 3 Determine the following limits using the properties of limits (i.e., limit laws) and by simplifying the expression, if necessary.

(i)
$$\lim_{x \to 5} x^4 \stackrel{?}{=} 5^4$$

(ii)
$$\lim_{x \to 2} (5x^3 + 4x^2) \stackrel{?}{=} 5 \lim_{x \to 2} x^3 + 4 \lim_{x \to 2} x^2 = 5 \cdot 2^3 + 4 \cdot 2^2$$

(iii)
$$\lim_{x \to 2} (5x^3 + 4x^2) \cdot (x^2 - 9) \stackrel{?}{=} \left[\lim_{x \to 2} (5x^3 + 4x^2) \right] \cdot \left[\lim_{x \to 2} (x^2 - 9) \right] = \cdots$$

(iv)
$$\lim_{x \to 2} \frac{x^2 - 9}{x - 3} \stackrel{?}{=} \lim_{x \to 2} \frac{x^2 - 9}{x - 3} = \frac{\lim_{x \to a} 2^2 - 9}{\lim_{x \to a} 2 - 3} = \frac{4 - 9}{-1} = \frac{-5}{-1} = 5$$

(v)
$$\lim_{h \to 0} \frac{(h - 2)^2 - 4}{h} \stackrel{?}{=} \lim_{h \to 0} \frac{h^2 - 4h + 4 - 4}{h} = \lim_{h \to 0} \frac{h^2 - 4h}{h} = \lim_{h \to 0} \frac{h(h - 4)}{h} = \lim_{h \to 0} (h - 4) = -4$$

Exercise 4 If f(x) is the function of Exercise 1 and g(x) = 3x + 2, then find the following limits:

(i)
$$\lim_{x \to 2} [f(x) \cdot g(x)] \stackrel{?}{=} \lim_{x \to 2} f(x) \cdot \lim_{x \to 2} g(x) = 4 \cdot [3 \cdot 2 + 2] = 32$$

(ii) $\lim_{x \to 2} \sqrt{f(x)} \stackrel{?}{=} \sqrt{\lim_{x \to 2} f(x)} = \sqrt{4} = 2$
Ans. 2