\qquad Date \qquad

Math 10250 Activity 4: Limits (Section 1.1)

GOAL: To obtain an intuitive understanding of the fundamental concept of limit and learn rules for computing it.

Q1: Using your intuition, how would you interpret the statement: The function $f(x)=\frac{x^{2}-2 x-3}{x-3}$ has limit 4 as x goes to $3 ? \quad f(x) \approx 4$ when x is close to 3 but $x \neq 3 \quad$ " $\approx "$ reads is approximately equal to
A1: Natural domain of $f: \underline{x \neq 3}$.
Since f is not defined at $x=3$, let's look at how f behaves near $x=3$. To do this, we make a table of values like this:
Step 1: We do numerical experimentation:

x	2.97	2.98	2.99	3	3.01	3.02	3.03
$f(x)=\frac{x^{2}-2 x-3}{x-3}$	3.97	3.98	3.99	$\boldsymbol{?}$	4.01	4.02	4.03

Pattern: $f(x)$ gets close to $\quad 4$ as x gets close to 3 .
To make this more precise we need the help of algebra. So, let us factor the numerator of f :
Step 2: Simplify $f(x)$ to remove $x-3$:
$f(x)=\frac{x^{2}-2 x-3}{x-3}=\frac{(x-3)(x+1)}{x-3} \stackrel{x \neq 3}{=} x+1$
Step 3: Send x to 3 in the simplified form:
$\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}=\lim _{x \rightarrow 3}(x+1)=3+1=4$, i.e.

- $f(x) \approx 4$ for all x near 3 (but $x \neq 3$), and
- can make $f(x)$ as close to x as we wish by taking x close enough to 3

Sketch of $y=f(x)$:

Figure 1
Now, we are confident to claim that the limit of $f(x)$ as x goes to 3 is 4 .
We write this as: $\quad \lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}=4$.

Q2: Give an Informal Definition of Limit.

A2:
$\lim _{x \rightarrow a} f(x)=L, i f:$

- $f(x) \approx L$ if x is close to a (but not equal to a)
- can make $f(x)$ as close to L as we wisf by taking x close enough to a

Exercise 1 The graph of a function f is shown in Figure 2. By visually inspecting the graph, find each of the following limits if it exists. If the limit does not exist, explain why.
(i) $\lim _{x \rightarrow 4} f(x) \stackrel{?}{=} 0$
(ii) $\lim _{x \rightarrow-1} f(x) \stackrel{?}{=} 1$
(iii) $\lim _{x \rightarrow 2} f(x) \stackrel{?}{=} 4$
(iv) $\lim _{x \rightarrow 0} f(x) \stackrel{?}{=}$ does not exit
(v) $\lim _{x \rightarrow 3} f(x) \stackrel{?}{=}$ does not exit

Exercise 2 Find $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$. Complete the following table of values to guess the limit and then use algebra to justify it (as in A1).
Step 1. We do numerical experimentation in the following table:

Q3: What are the basic Limit Laws?
A3:

$$
\text { 0. } \quad \lim _{x \rightarrow a} x^{n}=a^{n}
$$

1. $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$
2. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
4. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$

Exercise 3 Det
the expression, if
(i) $\lim _{x \rightarrow 5} x^{4} \stackrel{?}{=} 5^{4}$
(ii) $\lim _{x \rightarrow 2}\left(5 x^{3}+4 x^{2}\right) \stackrel{?}{=} 5 \lim _{x \rightarrow 2} x^{3}+4 \lim _{x \rightarrow 2} x^{2}=5 \cdot 2^{3}+4 \cdot 2^{2}$
(iii) $\lim _{x \rightarrow 2}\left(5 x^{3}+4 x^{2}\right) \cdot\left(x^{2}-9\right) \stackrel{?}{=}\left[\lim _{x \rightarrow 2}\left(5 x^{3}+4 x^{2}\right)\right] \cdot\left[\lim _{x \rightarrow 2}\left(x^{2}-9\right)\right]=\cdots$
(iv) $\lim _{x \rightarrow 2} \frac{x^{2}-9}{x-3} \stackrel{?}{=} \lim _{x \rightarrow 2} \frac{x^{2}-9}{x-3}=\frac{\lim _{x \rightarrow a} 2^{2}-9}{\lim _{x \rightarrow a} 2-3}=\frac{4-9}{-1}=\frac{-5}{-1}=5$
(v) $\lim _{h \rightarrow 0} \frac{(h-2)^{2}-4}{h} \stackrel{?}{=} \lim _{h \rightarrow 0} \frac{h^{2}-4 h+4-4}{h}=\lim _{h \rightarrow 0} \frac{h^{2}-4 h}{h}=\lim _{h \rightarrow 0} \frac{h(h-4)}{h}=\lim _{h \rightarrow 0}(h-4)=-4$

Exercise 4 If $f(x)$ is the function of Exercise 1 and $g(x)=3 x+2$, then find the following limits:
(i) $\lim _{x \rightarrow 2}[f(x) \cdot g(x)] \stackrel{?}{=} \lim _{x \rightarrow 2} f(x) \cdot \lim _{x \rightarrow 2} g(x)=4 \cdot[3 \cdot 2+2]=32$
(ii) $\lim _{x \rightarrow 2} \sqrt{f(x)} \stackrel{?}{=} \sqrt{\lim _{x \rightarrow 2} f(x)}=\sqrt{4}=2$

